CE810 - Game Design 2

Evaluating Performance

Joseph Walton-Rivers & Piers Williams

Tuesday, 15 May 2018

University of Essex

Player experience

Collection of events that occur to the player during the game

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit	Yes
Laundry Finishing	Yes No
Collecting resource	Yes
New message in chat window	Yes
Unit Moving	Yes

Metrics

Collect data on how players/bots work

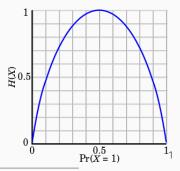
Activity What kinds of features can we collect?

Data from humans

- High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - Galvanic skin response
 - BCI
- Surveys and interviews
 - Likert Scales
 - Why did you feel that way?

- Internal State
 - Will depend on bot architecture
 - Measure state visits in FSM
 - Did the game make **full** use of the AI?
- How many times does a bot face a **difficult** choice?
 - What is a difficult choice?

- Final Score distribution
- Game Duration
- Score "Drama"
- Statistical distribution of states
- Degree of challenge


- Variability of scores
- Skill-depth

Action Sequences

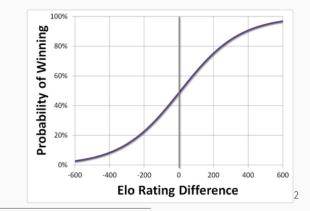
- Actions taken
- Record the sequence of button-pushes

Entropy

- Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i) I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$
 - Take a fair coin how much entropy?
 - $H(fairCoint) = \sum_{i=1}^{2} (\frac{1}{2}) \log_2(\frac{1}{2}) = -\sum_{i=1}^{2} (\frac{1}{2}) \times (-1) = 1$
 - How about an unfair coin? What is the entropy for a coin of probability 0.9?

A Game Example

				loc	visits	p(loc)	calc	
				0,0	10	0.067	0.067log ₂ (0.067)	
				0,1	12	0.08	0.080 log ₂ (0.008)	
loc 0	0	1	1	2	0,2	15	0.1	0.100 log ₂ (0.100)
	Ŭ			1,0	20	0.134	0.134 log ₂ (0.134)	
0	10	20	15	1,1	35	0.234	0.234 log ₂ (0.234)	
1	12	35	13	1,2	20	0.134	$0.134 \log_2(0.134)$	
2	15 20		15 20	10	2,0	15	0.1	$0.100 \log_2(0.100)$
				2,1	13	0.0867	0.0867log ₂ (0.0867)	
				2,2	10	0.067	0.067 log ₂ (0.067)	
					150	Total:		


Exercise

Now you try - in Java. Download the here and calculate the entropy

- How **good** is a player?
- What is the **issue** with win rates?
- If A > B and B > C is A > C?

Elo Ratings

- Elo is based on probability
- Elo(A) Elo(B) = P(A beats B)

²Borrowed from liquipedia