CE810 - Game Design 2

Evaluating Performance

Joseph Walton-Rivers \& Piers Williams
Tuesday, 15 May 2018

University of Essex

Player experience

Collection of events that occur to the player during the game

Should be clear - it is only the events that occur because of the game that are important

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?
Losing a Unit
Laundry Finishing
Collecting resource
New message in chat window
Unit Moving

All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?
Losing a Unit

```
Yes
```

Laundry Finishing
Collecting resource
New message in chat window
Unit Moving
All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

```
Losing a Unit
Laundry Finishing
Collecting resource
New message in chat window
Unit Moving
```

Yes
No

All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit	Yes
Laundry Finishing	No
Collecting resource	Yes
New message in chat window	
Unit Moving	

All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit	Yes
Laundry Finishing	No
Collecting resource	Yes
New message in chat window	Yes
Unit Moving	

All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit	Yes
Laundry Finishing	No
Collecting resource	Yes
New message in chat window	Yes
Unit Moving	Yes

All happen while the person is playing a game
Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?

Metrics

Collect data on how players/bots work
Activity
What kinds of features can we collect?

- High-level human experience
-Data from humans

LData from humans

- High-level human experience
- Final game scores?
- High-level human experience
- Final game scores?
- How long did they play for?
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- Galvanic skin response
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- Galvanic skin response
- BCl
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- Galvanic skin response
- BCl
- Surveys and interviews
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- Galvanic skin response
- BCI
- Surveys and interviews
- Likert Scales
- High-level human experience
- Final game scores?
- How long did they play for?
- Biosignals
- Where did they look?
- Galvanic skin response
- BCl
- Surveys and interviews
- Likert Scales
- Why did you feel that way?
- Internal State
- What does it mean if it doesn't make full use of the AI?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
- What does it signify about the game?
- Internal State
- Will depend on bot architecture
- What does it mean if it doesn't make full use of the Al?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
-What does it signify about the game?
- Internal State
- Will depend on bot architecture
- Measure state visits in FSM
- What does it mean if it doesn't make full use of the Al?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
-What does it signify about the game?
- Internal State
- Will depend on bot architecture
- Measure state visits in FSM
- Did the game make full use of the AI?
- What does it mean if it doesn't make full use of the Al?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
-What does it signify about the game?
- Internal State
- Will depend on bot architecture
- Measure state visits in FSM
- Did the game make full use of the AI?
- How many times does a bot face a difficult choice?
- What does it mean if it doesn't make full use of the Al?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
-What does it signify about the game? -Data from bots
- Internal State
- Will depend on bot architecture
- Measure state visits in FSM
- Did the game make full use of the AI?
- How many times does a bot face a difficult choice?
-What is a difficult choice?
- What does it mean if it doesn't make full use of the AI?
- Difficult Choice: MCTS - near identical branches, GA - No Convergence
- What does it signify about the game?
- Final Score distribution

Some things can be measured regardless of if a human or Al is playing

- How high, variation?
- Length, range of lengths
- Runaway victory?, keep changing hands? loop?
- Some states not used at all? Some overused?
- How to measure this?
- Final Score distribution
- Game Duration

Some things can be measured regardless of if a human or Al is playing

- How high, variation?
- Length, range of lengths
- Runaway victory?, keep changing hands? loop?
- Some states not used at all? Some overused?
- How to measure this?
- Final Score distribution
- Game Duration
- Score "Drama"

Some things can be measured regardless of if a human or Al is playing

- How high, variation?
- Length, range of lengths
- Runaway victory?, keep changing hands? loop?
- Some states not used at all? Some overused?
- How to measure this?
\sim LMetrics
- Final Score distribution
- Game Duration
- Score "Drama"
- Statistical distribution of states

Some things can be measured regardless of if a human or Al is playing

- How high, variation?
- Length, range of lengths
- Runaway victory?, keep changing hands? loop?
- Some states not used at all? Some overused?
- How to measure this?

ก LMetrics
$\left\llcorner_{\text {Data }}\right.$ from either

- Final Score distribution
- Game Duration
- Score "Drama"
- Statistical distribution of states
- Degree of challenge

Some things can be measured regardless of if a human or Al is playing

- How high, variation?
- Length, range of lengths
- Runaway victory?, keep changing hands? loop?
- Some states not used at all? Some overused?
- How to measure this?
- Variability of scores
- skill-depth

CE810 GD2

$\stackrel{\sim}{0}$ LAction Sequences

Action Sequences

CE810 GD2
Laction Sequences
$\left\llcorner_{\text {Data }}\right.$ from either

- Actions taken
- Record the sequence of button-pushes

CE810 GD2
LAction Sequences

- Sometimes used to interpret aspects of player experience
- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram

CE810 GD2
LAction Sequences

- Sometimes used to interpret aspects of player experience
- $H(X)=\sum_{i=1}^{n} P\left(x_{i}\right) /\left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)$
- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram

CE810 GD2
LAction Sequences

- Sometimes used to interpret aspects of player experience
- $H(X)=\sum_{i=1}^{n} P\left(x_{i}\right) /\left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)$
- Take a fair coin - how much entropy?
$\left\llcorner_{\text {Entropy }}\right.$
- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram

CE810 GD2
LAction Sequences

- Sometimes used to interpret aspects of player experience
- $H(X)=\sum_{i=1}^{n} P\left(x_{i}\right) \mid\left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)$

LEntropy

- Take a fair coin - how much entropy?
- H(fairCoint $)=\sum_{i=1}^{2}\left(\frac{1}{2}\right) \log _{2}\left(\frac{1}{2}\right)=-\sum_{i=1}^{2}\left(\frac{1}{2}\right) \times(-1)=1$
- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram

CE810 GD2
LAction Sequences

- Sometimes used to interpret aspects of player experience
- $H(X)=\sum_{i=1}^{n} P\left(x_{i}\right) \mid\left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)$

LEntropy

- Take a fair coin - how much entropy?
- $H($ fairCoint $)=\sum_{i=1}^{2}\left(\frac{1}{2}\right) \log _{2}\left(\frac{1}{2}\right)=-\sum_{i=1}^{2}\left(\frac{1}{2}\right) \times(-1)=1$
- How about an unfair coin? What is the entropy for a coin of probability 0.9 ?
- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram
- Sometimes used to interpret aspects of player experience
- $H(X)=\sum_{i=1}^{n} P\left(x_{i}\right) /\left(x_{i}\right)=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)$

CE810 GD2
2018-05-25
LAction Sequences

- Take a fair coin - how much entropy?
- $H($ fairCoint $)=\sum_{i=1}^{2}\left(\frac{1}{2}\right) \log _{2}\left(\frac{1}{2}\right)=-\sum_{i=1}^{2}\left(\frac{1}{2}\right) \times(-1)=1$
- How about an unfair coin? What is the entropy for a coin of probability 0.9 ?

- We won't worry too much about the middle definition
- Because it is a fair coin - each toss can tell us nothing
- Whiteboard time if students stuck:
- $P\left(x_{0}\right)=0.9, P\left(x_{1}\right)=0.1$
- Answer is: $H($ dodgyCoin $)=-\sum_{i=1}^{2} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)=$
- Continued: $-\left(\left(P\left(x_{0}\right) \log _{2} P\left(x_{0}\right)\right)+\left(P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)\right)\right)=0.47$
- Continued: $-\left(\left(0.9 \log _{2} 0.9\right)+\left(0.1 \log _{2} 0.1\right)\right)=0.47$
- Check our answer from earlier matches the diagram

CE810 GD2
LAction Sequences

loc	visits	$p($ loc $)$	calc
0,0	10	0.067	$0.067 \log _{2}(0.067)$

loc	0	1	2
0	10	20	15
1	12	35	13
2	15	20	10

- Some sample 2D location visit counts
- Converted into visit counts as fraction of total and then into probability of having visited that location
- Then we just perform the math as a giant summation. Computers are good at this
- Except computers are not keen on 0's

CE810 GD2

$\stackrel{\sim}{\sim}$
-Action Sequences
LA Game Example

- Some sample 2D location visit counts
- Converted into visit counts as fraction of total and then into probability of having visited that location
- Then we just perform the math as a giant summation. Computers are good at this
- Except computers are not keen on 0's

Action Sequences

Exercise

Now you try - in Java. Download the here and calculate the entropy

CE810 GD2

LAction Sequences

- And how do we represent this?
- Based on observations, was it enough? Watch F1 at one track and use those observations for another?
- Usually this is the case in games
- Does close win rates prove a lack of skill depth? No, current set of players doesn't demonstrate it. Like me and Joe playing Pool

CE810 GD2

LAction Sequences
LSkill Ratings

- How good is a player?
- What is the issue with win rates?
- And how do we represent this?
- Based on observations, was it enough? Watch F1 at one track and use those observations for another?
- Usually this is the case in games
- Does close win rates prove a lack of skill depth? No, current set of players doesn't demonstrate it. Like me and Joe playing Pool

CE810 GD2

LAction Sequences

LSkill Ratings

- And how do we represent this?
- How good is a player?
- What is the issue with win rates?
- If $A>B$ and $B>C$ is $A>C$?
- Based on observations, was it enough? Watch F1 at one track and use those observations for another?
- Usually this is the case in games
- Does close win rates prove a lack of skill depth? No, current set of players doesn't demonstrate it. Like me and Joe playing Pool

CE810 GD2
-Action Sequences
LElo Ratings

- Elo is based on probability
- Designed for chess
- Point difference between players denotes the probability of winning
- Advantage of 100 points $=64 \%$ chance of winning
- Advantage of 200 points $=76 \%$ chance of winning
- Works by taking points from the loser and giving them to the winner. Number transfered proportional to difference between points

CE810 GD2
-Action Sequences

- Elo is based on probability
- $\operatorname{Elo}(A)-\operatorname{Elo}(B)=P(A$ beats $B)$
- Designed for chess
- Point difference between players denotes the probability of winning
- Advantage of 100 points $=64 \%$ chance of winning
- Advantage of 200 points $=76 \%$ chance of winning
- Works by taking points from the loser and giving them to the winner. Number transfered proportional to difference between points
- Elo is based on probability
- $\operatorname{Elo}(A)-E l o(B)=P(A$ beats $B)$

CE810 GD2

$\stackrel{\sim}{\sim}$
-Action Sequences
LElo Ratings

- Designed for chess
- Point difference between players denotes the probability of winning
- Advantage of 100 points $=64 \%$ chance of winning
- Advantage of 200 points $=76 \%$ chance of winning
- Works by taking points from the loser and giving them to the winner. Number transfered proportional to difference between points

[^0]
[^0]: ${ }^{2}$ Borrowed from liquipedia

