CE810 - Game Design 2

Evaluating Performance

Joseph Walton-Rivers & Piers Williams Tuesday, 15 May 2018

University of Essex

Player experience

Collection of events that **occur** to the player **during** the game

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

- Losing a Unit
- Laundry Finishing
- Collecting resource
- New message in chat window
- Unit Moving

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit

Laundry Finishing

Collecting resource

New message in chat window

Unit Moving

Yes

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Which of these are a part of the player experience and which are not?

Losing a Unit

Laundry Finishing

Collecting resource

New message in chat window

Unit Moving

3

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Losing a Unit	Yes
Laundry Finishing	Yes No
Collecting resource	Yes
New message in chat window	
Unit Moving	

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Losing a Unit	Yes
Laundry Finishing	No
Collecting resource	Yes
New message in chat window	Yes
Unit Moving	

Scenario

Jeffrey is playing an online RTS game, and he is playing with a friend online against two other people.

Question

Losing a Unit	Yes
Laundry Finishing	No
Collecting resource	Yes
New message in chat window	Yes
Unit Moving	Yes

Metrics

Collect data on how players/bots work

Activity

What kinds of features can we collect?

· High-level human experience

- · High-level human experience
 - Final game scores?

- · High-level human experience
 - · Final game scores?
 - How long did they play for?

- · High-level human experience
 - · Final game scores?
 - How long did they play for?
- Biosignals

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - · Galvanic skin response

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - · Galvanic skin response
 - · BCI

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - · Galvanic skin response
 - BCI
- Surveys and interviews

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - · Galvanic skin response
 - BCI
- Surveys and interviews
 - · Likert Scales

- · High-level human experience
 - Final game scores?
 - How long did they play for?
- Biosignals
 - Where did they look?
 - · Galvanic skin response
 - BCI
- Surveys and interviews
 - · Likert Scales
 - · Why did you feel that way?

· Internal State

- · Internal State
 - Will depend on bot architecture

- · Internal State
 - · Will depend on bot architecture
 - · Measure state visits in FSM

- Internal State
 - · Will depend on bot architecture
 - · Measure state visits in FSM
 - Did the game make full use of the AI?

- · Internal State
 - · Will depend on bot architecture
 - · Measure state visits in FSM
 - Did the game make **full** use of the AI?
- · How many times does a bot face a difficult choice?

- · Internal State
 - · Will depend on bot architecture
 - · Measure state visits in FSM
 - Did the game make **full** use of the AI?
- How many times does a bot face a difficult choice?
 - · What is a difficult choice?

· Final Score distribution

- · Final Score distribution
- · Game Duration

- · Final Score distribution
- · Game Duration
- · Score "Drama"

- · Final Score distribution
- · Game Duration
- · Score "Drama"
- Statistical distribution of states

- · Final Score distribution
- · Game Duration
- · Score "Drama"
- Statistical distribution of states
- Degree of challenge

Data from populations

- Variability of scores
- · Skill-depth

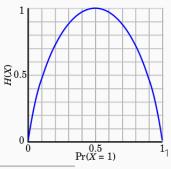
Action Sequences

- · Actions taken
- · Record the sequence of button-pushes

Entropy

· Sometimes used to **interpret** aspects of player experience

Entropy


- $\boldsymbol{\cdot}$ Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$

- Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$
 - · Take a fair coin how much entropy?

- Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$
 - · Take a fair coin how much entropy?
 - $H(fairCoint) = \sum_{i=1}^{2} (\frac{1}{2}) \log_2(\frac{1}{2}) = -\sum_{i=1}^{2} (\frac{1}{2}) \times (-1) = 1$

- · Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$
 - Take a fair coin how much entropy?
 - $H(fairCoint) = \sum_{i=1}^{2} (\frac{1}{2}) \log_2(\frac{1}{2}) = -\sum_{i=1}^{2} (\frac{1}{2}) \times (-1) = 1$
 - How about an unfair coin? What is the entropy for a coin of probability 0.9?

- Sometimes used to interpret aspects of player experience
 - $H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$
 - Take a fair coin how much entropy?
 - $H(fairCoint) = \sum_{i=1}^{2} (\frac{1}{2}) \log_2(\frac{1}{2}) = -\sum_{i=1}^{2} (\frac{1}{2}) \times (-1) = 1$
 - How about an unfair coin? What is the entropy for a coin of probability 0.9?

¹Borrowed from wikipedia

A Game Example

loc	visits	p(loc)	calc
0,0	10	0.067	0.067 log ₂ (0.067)

loc	0	1	2
0	10	20	15
1	12	35	13
2	15	20	10

A Game Example

loc	0	1	2
0	10	20	15
1	12	35	13
2	15	20	10
	'	•	'

loc	visits	p(loc)	calc
0,0	10	0.067	0.067 log ₂ (0.067)
0,1	12	0.08	0.080 log ₂ (0.008)
0,2	15	0.1	0.100 log ₂ (0.100)
1,0	20	0.134	0.134 log ₂ (0.134)
1,1	35	0.234	$0.234 \log_2(0.234)$
1,2	20	0.134	0.134 log ₂ (0.134)
2,0	15	0.1	0.100 log ₂ (0.100)
2,1	13	0.0867	0.0867 log ₂ (0.0867)
2,2	10	0.067	0.067 log ₂ (0.067)
	150	Total:	

A Game Example

Exercise

Now you try - in Java. Download the here and calculate the entropy

Skill Ratings

• How **good** is a player?

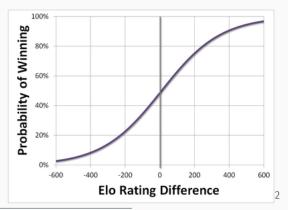
Skill Ratings

- · How good is a player?
- · What is the **issue** with win rates?

Skill Ratings

- How **good** is a player?
- · What is the **issue** with win rates?
- If A > B and B > C is A > C?

Elo Ratings


 \cdot Elo is based on probability

Elo Ratings

- · Elo is based on probability
- Elo(A) Elo(B) = P(A beats B)

Elo Ratings

- · Elo is based on probability
- Elo(A) Elo(B) = P(A beats B)

²Borrowed from liquipedia