
CE810 - Game Design 2
Lab - Game Design Hack

Joseph Walton-Rivers & Piers Williams
Wednesday, 16 May 2018

University of Essex

1



Intro



CE810 game engine

• Remember we mentioned that we built you a game
engine...

• well, here it is.

2



Limitations

• Games take place on a hex grid
• Games are turn-based
• No randomness

We originally designed it for Civilization style games, but it’s
much more general than that.

3



Comparison

A number of you have encountered the GVGAI Framework.

GVGAI Framework Our System
Custom VGDL files Json standard based files
No ability to extend features Ability to extend features
Slows down with additional rules No such speed issues
Focuses on Interactions Focuses on Rules

4

gvgai.net


Game Engine



Key Parts

• A game has Entity Types, Resources, and Terrain
• Entity types have actions, costs and properties
• Resources and Terrain make up the maps
• Victory conditions tell you how to win (or lose)

5



Entity Types

• Used to define an Entity
• Every entity has a type
• Entity Types can extend other types
• Defines:

• Graphics
• Actions
• Properties

6



Example: EntityType

{
"name": "abstract_civilian",
"properties": {

"movement": 1,
"health": 5,
"attackRange": 1,
"atkMelee": 1,
"ter-grass": 1

},
"cost": {
"food": 10
},

7



Example: EntityType

"_actions": [
"Move",
"MeleeAttackAction",
"Build[farm]",
"BuildOnResource[lumber_mill:wood]",
"BuildOnResource[gold_mine:gold]",
"Build[marketplace]"

]
},

8



Entities

• Have an Entity Type
• Have properties
• Can perform 1 Action per turn

9



Actions

Actions
What an Entity can do

• 0 or more
• Parameterisable
• Inherited

10



Orders

Order
An order is generated when an Action is used on a particular
location

• What an Entity actually does in its turn
• Used to update the game state
• Move Action→ multiple possible Move Orders

11



Properties

• String→ Integer mapping
• Used by default actions as well as custom ones
• Two sets per Entity
• Inherited

12



Terrain

Terrain defines the ground in the games

id The name of this terrain type
image The graphics path for drawing

requiredTags Mapping of String→ Integer.

13



Extensions

• The game is extendible
• You can change the json files defining the game
• You can add your own code

• It will be detected on the classpath
• Use the same way as the built in items

• You can add new:
• Actions
• Orders
• AI
• Victory Conditions

14



Examples



Medieval TBS

15



Medieval TBS

• Fairly conventional
• Build on resources for
turnly income

• Civilians, archers, and
knights

16



Transmission

17



Transmission

• Global Game Jam 2018
Entry

• Space based TBS
• Units must stay within
transmission range

• Can be extended with
satellites

• Satellites can be
destroyed

18



Hexxagon

Entity types: piece, piece-p1, piece-p2 Terrain types: board
Actions: jump and clone Resources: ticks (used to permit

moving only one piece) Victory conditions: LastManStanding,
MostPiecesLock

19



Hexxagon Entity Definition

{
"name": "piece", // it's called 'piece'
"properties": {
"ter-playzone": 1, // it can 'walk' on
playzone tiles↪→

"health": 1 // it has 1 health (things
with no health die)↪→

},
"_actions":[
"Jump[tick]", // Jump Action (defined in
Java)↪→

"Clone[tick]" // Clone action (defined in
Java)↪→

]
},

20



Aliens Versus Predators

21



Aliens Versus Predators

• 3 Teams
• Aliens

• Queen Spawn Egg
• Egg→ FaceHugger
• FaceHugger + Human→
Incubator

• Incubator→ Alien

• Humans
• Predators

22



Your Turn

• This is what we did
• Demonstrates some of what can be achieved
• Your job is to make interesting games

• Push the limits of the engine
• Not a re-skinned TBS with no new mechanics
• That have a reasonable design space for tuning

• Do not get hung up on graphics
• Medieval game used a single set of assets designed for
hexagons

• Hexxagon and AVP used single colour tiles and basic
images

• Rules and interesting play are more important
• Graphics serve to distinguish between different units

23



Design Patterns



Design Patterns

• Like programming patterns
• Many teams may have similar tasks to solve
• Some helpful patterns shown here

24



Movement Lock

Allow the player to only move one piece on their go

• Resource: time
• Only allow a move if the resource < current tick
• After a move is made, update the resource to tick + 1

25



Timers

You can define a timer by doing the following:

• Create an automatic action that performs the effect that
you’d like to achieve.

• Set requirements to be “timeProperty ≥ timeRequired”
• Create an automatic action that generates 1 timeProperty
• Define the automatic actions as [generateAction,
doneAction]

26


	Intro
	Game Engine
	Examples
	Design Patterns

