CE810 - Game Design 2

Lab - Searchable Design Spaces

Joseph Walton-Rivers & Piers Williams Monday, 14 May 2018

University of Essex

CE810 GD2

CE810 - Game Design 2 Lab - Searchable Design Spaces

Joseph Walton-Rivers & Piers Williams Monday, 14 May 2018 University of Essex

Intro

Intro

Parameters

Design Spaces

• In this morning's session we talked about Game

Why is this dependance possibly an issue?

- In this morning's session we talked about Game
 Parameters
- These are properties which help to define the game

• Why is this dependance possibly an issue?

- In this morning's session we talked about Game Parameters
- These are properties which help to define the game
- These are often **dependant** on one another.

· Why is this dependance possibly an issue?

Flappy Bird

Exercise: Game Parameters

Question

What game parameters are there for *Flappy Bird*?

CE810 GD2

Flappy Bird

Exercise: Game Parameters

Answer: Game Parameters

Figure 1: paramters by Isaksen et al @ NYU

Flappy Birds

CE810 GD2

Flappy Bird

Flappy Birds

Activity
Go to the Flappy Bird damo and change the sliders.
How does changing the parameters affect the gammeplay?
http://game.emgineering.nyu.edu/projects/
exploring-game-space/[1]

Activity

Go to the *Flappy Bird* demo and change the sliders. How does changing the parameters affect the gameplay?

http://game.engineering.nyu.edu/projects/
exploring-game-space/[1]

How does this relate to us?

Isaksen et al basically did the following:

- 1. Select parameters
- 2. Repeat *N* times
 - 2.1 Generate games
 - 2.2 Evaluate games
 - 2.3 Record results
- 3. Analyse results
- 4. Output result

This is how we're going to think about tuning our own game parameters.

The Role of Al

Problem Doing evaluations is time consumingSolution Make Als that play them

Flappy Bird

—The Ro

CE810 GD2

└─The Role of AI

Solution Make Als that play them

The Role of Al

CE810 GD2 CF-90-800 CF-90-800

Asteroids

Asteroids

Asteroids

Lets look at a more complicated example

CE810 GD2

—Asteroids

—Asteroids

Parameters

Question

What parameters could we change for Asteroids?

CE810 GD2 2018-05-25 L_Asteroids

└─ Parameters

What parameters could we change for Asteroids?

Parameters

Question

What parameters could we change for Asteroids?

- · Game Length
- Number of bullets
- Speed of bullets
- Number of asteroids
- Number of asteroid children
- · Ship speed
- · Ship turn rate
- Bullet cost
- · Can bullets hit the ship

Question
What parameters could we change for Asteroids?

- Game Length
- Number of bullets

Number of bullets
 Speed of bullets
 Number of asteroids

Number of asteroids
 Number of asteroid children

Number of aste
 Ship speed
 Ship turn rate

- Ship speed - Ship turn rate - Bullet cost

Bullet cost
 Can bullets hit the ship

2018-05-25

—Asteroids └─Metrics

What can we measure about Asteroids? - Rankings

 Score difference - Time to win (game ticks) · Distance travelled

Question

Question

What can we measure about Asteroids?

- Rankings
- Score difference
- Time to win (game ticks) Distance travelled

Only some examples

CE810 GD2

10

2018-05-25

∟Metrics

CE810 GD2

-Asteroids

and shoot player over the other agents.

Create a version of Asteroids that disadvantages the rotate

Exercise

Create a version of *Asteroids* that **disadvantages** the rotate and shoot player over the other agents.

Asteroids Codebase

Overview

CE810 GD2

└─Asteroids Codebase

└─Overview

2018-05-25

Easy to change parameters

Can customise it further if you particularly want something else

Genetic algorithm included to assist you

Only thing it needs _ a better Fitness Function

Relatively simple

- · Relatively simple
- Easy to change parameters
- Can customise it further if you particularly want something else
- · Genetic algorithm included to assist you
 - · Only thing it needs ... a better Fitness Function

2018-05-25

CE810 GD2

Running a Game

Most examples shortened for fitting in the slides

-Asteroids Codebase

new MultiRecorder(scoreRecorder hulletRecorder)

battle.playGame(

SimpleBattle battle = new SimpleBattle(true, params

BattleController p1 = new SingleMCTSPlayer(new Random()):

SimpleBattle battle = **new** SimpleBattle(**true**, params); BattleController p1 = **new** SingleMCTSPlayer(**new** Random()); battle.playGame(p1, new MultiRecorder(scoreRecorder, bulletRecorder)

13

The set of parameters currently supported is in that handy list from slide 9

14

· Searching design spaces can require a lot of

computational power.

2018-05-25

CE810 GD2

-Asteroids Codebase └─Searching the space We will cover how they work later

Searching the space

· Searching design spaces can require a lot of computational power.

· We can do better

15

-Asteroids Codebase

CE810 GD2

2018-05-25

We will cover how they work later

└─Searching the space

Searching the space

· Searching design spaces can require a lot of computational power.

- · We can do better
- · Genetic Algorithms can aid us here

2018-05-25 -Asteroids Codebase

CE810 GD2

Searching the space

Searching the space

We will cover how they work later

- Searching design spaces can require a lot of computational power.
- · We can do better
- · Genetic Algorithms can aid us here
- We have implemented a basic searcher using a GA Library

CE810 GD2

CE810 GD2

Asteroio

__Asteroids Codebase

Searching the space

We will cover how they work later

Searching the space

computational power.

Genetic Algorithms can aid us here
 We have implemented a basic searcher using a GA Library

- · Searching design spaces can require a lot of computational power.
- · We can do better
- · Genetic Algorithms can aid us here
- We have implemented a basic searcher using a GA Library
- · It'll do for now

2018-05-25 -Asteroids Codebase

Searching the space

Searching the space

We have implemented a basic searcher using a GA Library

We will cover how they work later

- Searching design spaces can require a lot of computational power.
- · We can do better
- · Genetic Algorithms can aid us here
- We have implemented a basic searcher using a GA Library
- · It'll do for now
- Head to class
 "com.fossgalaxy.games.asteroids.battle.jenetics.Jenetics"

CE810 GD2

2018-05-25

-Asteroids Codebase

—Searching the space

arching the space

We can do better

We have implemented a basic searcher using a GA Library

- It'll do for i

"com.fossgalaxy.games.asteroids.battle.jenetics.J

We will cover how they work later

Jenetics: Parameters

Arrays.fill(USING, false); USING[N MISSILES] = true; USING[BULLET TIME TO LIVE] = true; USING[SHIP_MAX_SPEED] = true; USING[SHIP_STEER_RATE] = true; USING[BULLET KILL SHIP] = true;

CE810 GD2 -Asteroids Codebase

2018-05-25

└─ lenetics: Parameters

USINGIN MISSILESI - true

lenetics: Parameters

2018-05-25

```
-Asteroids Codebase
    ☐Jenetics: Limits
```

CE810 GD2

int[][] limits = { {10, 500}, // N_MISSILES {20, 100}, // BULLETT_TIME_TO_LIVE {1, 10}, {5, 50}, $\{0, 1\}$

Jenetics: Chromosomes

```
// Convert limits to the chromosomes
List<Chromosome<IntegerGene» genes = Arrays
 .stream(limits)
 .map(x \rightarrow IntegerChromosome.of(x[0], x[1], 1))
 .collect(Collectors.toList());
// Chromosomes to genotype
Factory<Genotype<IntegerGene» genotype =

→ Genotype.of(genes);
```

```
CE810 GD2
L—Asteroids Codebase
```

└─lenetics: Chromosomes

// Convert limits to the chromosomes
List-Chromosome-IntegerGenes genes - Arrays
.straam(limits)
.map(x -> IntegerChromosome.of(x(0), x(1), 1))
.collect(Collectors toList())
// Chromosomes to genotype

lenetics: Chromosomes

// Chromosomes to genotype
Factory-Genotype<integerGene» genotype =
-- Genotype.of(genes);</pre>

2018-05-25

Jenetics: Fitness

```
int[] params = getParamsFromGenotype(genotype);
AlExperiment experiment = new AlExperiment(5,

→ controllerFunctions, params);

Map<String, List<Integer» scores = experiment.run();
Map<String, Integer> avg = new HashMap<>();
for(Map.Entry<String, List<Integer» entry : scores.entrySet()){</pre>
avg.put(
entry.getKey(),
entry.getValue().stream().mapToInt(Integer::new).sum() / 5);
return avg.get("PiersMCTS") - avg.get("RotateAndShoot");
```

CE810 GD2

2018-05-25

-Asteroids Codebase

└─Jenetics: Fitness

ritness

 params = getrarams-romuenotype(genoty experiment experiment = new AlExperiment() controllerFunctions, params);

Map-String, List-(Integer» scores = experiment.run(); Map-String, Integer> avg = new HashMap<>(); for(MapEntry-String, List-(Integer» entry: scores.entrySet())[avg.put(entryeetKev().

entry.getValue().stream().mapToInt(Integer:new).sum() / 5);

]
return ave.set("PiersMCTS") - ave.set("RotateAndShoot"):

.executor(exec)

.build():

ExecutorService exec = Executors.newFixedThreadPool(3); final Engine<IntegerGene, Double> engine = Engine .builder(Jenetics::fitness, genotype) .populationSize(50)

.optimize(Optimize.MAXIMUM)

CE810 GD2

2018-05-25

-Asteroids Codebase

ExecutorService exec = Executors.newFixedThreadPool(3) final Engine<IntegerGene, Double> engine = Engine .builder(Jenetics:fitness, genotype) .optimize(Optimize.MAXIMUM)

Jenetics: Engine

└─Jenetics: Engine

Jenetics: Running it

System.out.println(result);

```
final Genotype<IntegerGene> result = engine.stream()
 .limit(limit.byExecutionTime(Duration.ofMinutes(120)))
 .limit(300)
 .peek( x-> {
  System.out.println("Generation: " + x.getGeneration());
  System.out.println("Best Fitness: " + x.getBestFitness());
 .collect(EvolutionResult.toBestGenotype());
```

L-Asteroids Codebase

L-Jenetics: Running it

CF810 GD2

 A. Isaksen, D. Gopstein, and A. Nealen. Exploring game space using survival analysis. In *FDG*, 2015.

D. Perez, S. Lucas, and J. Liu. Lecture slides for ce810. 2015-2017.